Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(4): 686-696, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467791

RESUMEN

To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Drosophila/genética , Diferenciación Celular/genética
2.
Sci Adv ; 9(5): eade1085, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735786

RESUMEN

The boundaries of topologically associating domains (TADs) are delimited by insulators and/or active promoters; however, how they are initially established during embryogenesis remains unclear. Here, we examined this during the first hours of Drosophila embryogenesis. DNA-FISH confirms that intra-TAD pairwise proximity is established during zygotic genome activation (ZGA) but with extensive cell-to-cell heterogeneity. Most newly formed boundaries are occupied by combinations of CTCF, BEAF-32, and/or CP190. Depleting each insulator individually from chromatin revealed that TADs can still establish, although with lower insulation, with a subset of boundaries (~10%) being more dependent on specific insulators. Some weakened boundaries have aberrant gene expression due to unconstrained enhancer activity. However, the majority of misexpressed genes have no obvious direct relationship to changes in domain-boundary insulation. Deletion of an active promoter (thereby blocking transcription) at one boundary had a greater impact than deleting the insulator-bound region itself. This suggests that cross-talk between insulators and active promoters and/or transcription might reinforce domain boundary insulation during embryogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Genoma , Cromatina/genética , Cromosomas , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Factor de Unión a CCCTC/genética
3.
Genome Res ; 31(9): 1573-1581, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34266978

RESUMEN

Inter-species comparisons of both morphology and gene expression within a phylum have revealed a period in the middle of embryogenesis with more similarity between species compared with earlier and later time points. This "developmental hourglass" pattern has been observed in many phyla, yet the evolutionary constraints on gene expression, as well as the underlying mechanisms of how this is regulated, remain elusive. Moreover, the role of positive selection on gene regulation in the more diverged earlier and later stages of embryogenesis remains unknown. Here, using DNase-seq to identify regulatory regions in two distant Drosophila species (D. melanogaster and D. virilis), we assessed the evolutionary conservation and adaptive evolution of enhancers throughout multiple stages of embryogenesis. This revealed a higher proportion of conserved enhancers at the phylotypic period, providing a regulatory basis for the hourglass expression pattern. Using an in silico mutagenesis approach, we detect signatures of positive selection on developmental enhancers at early and late stages of embryogenesis, with a depletion at the phylotypic period, suggesting positive selection as one evolutionary mechanism underlying the hourglass pattern of animal evolution.


Asunto(s)
Drosophila melanogaster , Evolución Molecular , Animales , Drosophila/genética , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos
4.
Genome Res ; 31(2): 211-224, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310749

RESUMEN

Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.

5.
Dev Cell ; 55(5): 648-664.e9, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171098

RESUMEN

Enhancers are essential drivers of cell states, yet the relationship between accessibility, regulatory activity, and in vivo lineage commitment during embryogenesis remains poorly understood. Here, we measure chromatin accessibility in isolated neural and mesodermal lineages across a time course of Drosophila embryogenesis. Promoters, including tissue-specific genes, are often constitutively open, even in contexts where the gene is not expressed. In contrast, the majority of distal elements have dynamic, tissue-specific accessibility. Enhancer priming appears rarely within a lineage, perhaps reflecting the speed of Drosophila embryogenesis. However, many tissue-specific enhancers are accessible in other lineages early on and become progressively closed as embryogenesis proceeds. We demonstrate the usefulness of this tissue- and time-resolved resource to definitively identify single-cell clusters, to uncover predictive motifs, and to identify many regulators of tissue development. For one such predicted neural regulator, l(3)neo38, we generate a loss-of-function mutant and uncover an essential role for neuromuscular junction and brain development.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Linaje de la Célula/genética , Cromatina , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Músculos/embriología , Neuronas/citología , Especificidad de Órganos/genética , Unión Proteica , Análisis de la Célula Individual , Factores de Tiempo , Factores de Transcripción/metabolismo
6.
Nat Genet ; 51(8): 1272-1282, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31308546

RESUMEN

Chromatin topology is intricately linked to gene expression, yet its functional requirement remains unclear. Here, we comprehensively assessed the interplay between genome topology and gene expression using highly rearranged chromosomes (balancers) spanning ~75% of the Drosophila genome. Using transheterozyte (balancer/wild-type) embryos, we measured allele-specific changes in topology and gene expression in cis, while minimizing trans effects. Through genome sequencing, we resolved eight large nested inversions, smaller inversions, duplications and thousands of deletions. These extensive rearrangements caused many changes to chromatin topology, disrupting long-range loops, topologically associating domains (TADs) and promoter interactions, yet these are not predictive of changes in expression. Gene expression is generally not altered around inversion breakpoints, indicating that mis-appropriate enhancer-promoter activation is a rare event. Similarly, shuffling or fusing TADs, changing intra-TAD connections and disrupting long-range inter-TAD loops does not alter expression for the majority of genes. Our results suggest that properties other than chromatin topology ensure productive enhancer-promoter interactions.


Asunto(s)
Cromatina/genética , Cromosomas de Insectos/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Reordenamiento Génico , Genoma de los Insectos , Animales , Mapeo Cromosómico , Femenino , Masculino , Regiones Promotoras Genéticas
7.
Curr Biol ; 28(22): 3547-3561.e9, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30393032

RESUMEN

Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , ARN Largo no Codificante/genética , Animales , Desarrollo Embrionario/genética , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Fluorescente in Situ/métodos , Especificidad de Órganos/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
8.
Genes Dev ; 32(1): 42-57, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378788

RESUMEN

Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio-temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , ARN no Traducido/biosíntesis , Transcripción Genética , Animales , Drosophila/embriología , Drosophila/genética , Desarrollo Embrionario/genética , Humanos , Células K562
9.
Nature ; 541(7637): 402-406, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28024300

RESUMEN

Embryonic development is driven by tightly regulated patterns of gene expression, despite extensive genetic variation among individuals. Studies of expression quantitative trait loci (eQTL) indicate that genetic variation frequently alters gene expression in cell-culture models and differentiated tissues. However, the extent and types of genetic variation impacting embryonic gene expression, and their interactions with developmental programs, remain largely unknown. Here we assessed the effect of genetic variation on transcriptional (expression levels) and post-transcriptional (3' RNA processing) regulation across multiple stages of metazoan development, using 80 inbred Drosophila wild isolates, identifying thousands of developmental-stage-specific and shared QTL. Given the small blocks of linkage disequilibrium in Drosophila, we obtain near base-pair resolution, resolving causal mutations in developmental enhancers, validated transcription-factor-binding sites and RNA motifs. This fine-grain mapping uncovered extensive allelic interactions within enhancers that have opposite effects, thereby buffering their impact on enhancer activity. QTL affecting 3' RNA processing identify new functional motifs leading to transcript isoform diversity and changes in the lengths of 3' untranslated regions. These results highlight how developmental stage influences the effects of genetic variation and uncover multiple mechanisms that regulate and buffer expression variation during embryogenesis.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Regiones no Traducidas 3'/genética , Alelos , Animales , Sitios de Unión , Elementos de Facilitación Genéticos , Desequilibrio de Ligamiento , Mutación , Sitios de Carácter Cuantitativo , Procesamiento de Término de ARN 3' , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...